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1. Introduction

More traditional optimization methods, like mathematical programming and optimal control meth-
ods, are very efficient in some contexts, but for large classes of complex (realistic) stochastic models,
they are no longer pratical. For such models, simulation is often the only viable tool. Developing
efficient ways of optimizing stochastic discrete event systems by simulation is not easy, but ex-
tremely important in practice. Current approaches include, among others, ranking and selection
procedures (for finite parameter spaces), response surface methodology, gradient-based stochas-
tic approximation, and the stochastic counterpart method (the latter methods are for continuous
parameter spaces). See Fu (1994) for a recent survey. Recent advances in gradient estimation
methodology have increased interest in stochastic approximation (SA) algorithms for simulation
optimization. Different variants of SA, combined with a variety of derivative estimation techniques
(DETs), have been proposed and studied. See, e.g., Andrad6ttir (1990, 1991a, b), Chong and
Ramadge (1990, 1992a, b, 1993), Dupuis and Simha (1991), Fu (1990), Gaivoronski (1992), Glynn
(1986, 1987, 1989), Pflug (1990), and Suri and Leung (1989). Convergence proofs have been given
for many of them. There was also some numerical results in a few cases, but no extensive numerical
investigation involving all (or most) of those methods. This paper reports the results of such a
numerical investigation. It is a companion paper to L'Ecuyer and Glynn (1993), which contains
most of the theory.

Suri and Leung (1989) have performed preliminary numerical experiments with an M/M/1
queue. The objective was to find the value of the average service time 0 that would minimize a given
function of the average sojourn time per customer, in steady-state. That problem is easy to solve
analytically and they wanted to use it as a "benchmark" to compare two SA-DET combinations, one
of them based on infinitesimal perturbation analysis (IPA) and the other one on finite differences
(FD). These two methods were presented as heuristics and they observed empirically that the one
based on IPA converged much faster. We show in this paper that their second method, based on
FD, actually converges to the wrong value. In L'Ecuyer and Glynn (1993), we prove convergence
to the optimum for their SA-IPA combination, as well as for other variants involving FD, FD
with common random numbers (FDC), IPA, and the likelihood ratio (LR) method. For most of
the DETs, in order for SA to converge towards the optimum, the simulation length must increase

from iteration to iteration to make the bias of the derivative estimator go towards zero. One
exception is IPA. Some might think that in that case, keeping a (small) fixed simulation length
for all iterations should be better than having longer and longer simulations, because for a given
computer budget, the former allows more iterations to be performed. But our experiments show
that it is not necessarily the case. This was first observed and illustrated graphically in L'Ecuyer,
Giroux, and Glynn (1989), then in Chong and Ramadge (1990, 1993). The proof of convergence
in Chong and Ramadge (1993) gives some theoretical support to that observation. Indeed, if the
variance of the derivative estimator decreases linearly with the simulation length, as is the case
for the example examined here, it appears that the simulation length per iteration should not
matter much. For a given computer budget, short or long, fixed or increasing simulation lengths
yield comparable results. Of course, this does not hold universally. If the simulation lengths per
iteration are so long that they allow very few SA iterations, performance deteriorates.

In §2, we consider an M/M/1 example similar to the one studied by Suri and Leung (1989).
We feel that most of the important questions that would arise in more general models are well
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illustrated by this simple example. §3 recalls some variants of SA. §4 describes many derivative
estimators and discusses implementation issues. Our experimental setup is established in §5. For
each SA-DET variant, we look at the empirical mean-square error of the value of a produced by
the optimization algorithm, after a fixed number of simulated customers. §6 reports our numerical
investigations. In the conclusion, we summarize our results and mention prospects for further
research.

2. An M/M/1 Example

Consider an M/M/1 queue with arrival rate A = 1 and mean service time 0 E ) = [min, , 0 max] C
(0, 1). So, the service time has distribution Bq(() = 1 - e-C/0, with density be(() = (1/0)e-c/e. Let
w(O) be the average sojourn time in the system per customer, in steady-state, at parameter level
8. The objective function is defined by

a(O) = w(O) + C 1 /0, (1)

where C1 is a positive constant. We want to minimize a(0) over e = [(rin, Omx], a strict subinterval
of ). The optimal value 0* can be computed easily in this case. Indeed, if 1(0) and u(O) denote
respectively the expected number of customers and expected total sojourn time for all the customers

in a busy cycle, one has

1(0) = 1/(1- 6),

u(8) = 0/(1 - 6)2,

W(O) = U(O)/I(O) = 01(1 - 6),

a'(0) = 1/(1,- 0)2 -C110,

G"(8) = 2/(1 - 9)3 + 2C,/8 3,
0* = VC- / 71)

(if this value is not in 9, the optimum is at the nearest boundary point). We will compare our
empirical results to this theoretical value using the empirical mean-square error. In Appendix II,
we verify that this example satisfies the assumptions of L'Ecuyer and Glynn (1993).

3. SA and Some of its Variants

The classical SA algorithm has the form

0.+1 := 're(O. - 7/,'Y,,)? (2)

where O,, is the parameter value at the beginning of iteration n, Y, is an estimate of a'(0,) obtained

at iteration n, {7,I, n > 1} is a deterministic sequence of gains decreasing to 0, and tre is a projection
operator on the set e. Typically, one takes 7, = 70fn-l1 for some constant 7o > 0. Conditions under
which 0,, converges almost surely (a.s.) to the optimizer are given in many places, including Kushner
and Clark (1978) and L'Ecuyer and Glynn (1993). For n = 1, 2,3,..., let En denote the expectation
conditional on ( On,...,O,,Y1 ,...,Y.- 1 ). If E,([Y,] = a'(0.) and E,[(Y,, - a'(0.)) 2] < K for all n
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for some finite constant K, a has a bounded third derivative, a"(01 ) > 0, a'(8*) = 0, and On •-•" 0",
then the (asymptotically) "optimal" sequence is 7,, = ytn- 1 , with -7• = (a"(9))-, yielding the
canonical convergence rate, in the sense that n-1/ 2(0n - 0°) converges in distribution to a centered
normal with minimal variance (see Chung 1954, Fabian 1968, Goldstein 1988, Major and Revesz
1973). We put the word optimal in quotes because in fact, this is optimal only if we assume that all
the Y,,'s have equivalent computational costs. More generally, for y,, = -y0n-", under the same set
of assumptions, n-9(0, - 00) converges to a centered normal in the cases covered by the following
definition of fl:

7/2 if 1/2 < y < 1;
1/2 if 7 = 1 and o > 7t/2; (3)
7o/7- if t=1 and 7o< yo/2.

For further details, more general SA algorithms, multidimensional parameters, and more general
results, see also Benveniste, M~tivier, and Priouret (1987), Fabian (1968), Goldstein (1988), Kush-
ner and Clark (1978), Kushner and Yang (1991), Polyak and Tsypkin (1980), Polyak (1990), and
Yin (1992).

Unfortunately, the conditions under which the above "convergence rate" results have been
proved do not hold for the problem considered here, for most of our DET variants. Indeed, typically,
each 1•• is a biased derivative estimator and, when Y, is based on a simulation of length tn which
increases with n, the variance and computational cost of Yn vary with n. The convergence rates and
optimal sequence In, might then be quite different. Finding the optimal sequence and convergence
rate for each SA-DET combination would be a demanding task that goes beyond the scope of this
paper and will be the subject of further research. Nevertheless, our numerical exploration will show
that for some DET's, the above convergence rate results appear to hold for our problem. They
also hold for some regenerative DET variants, for which the above conditions are satisfied. For
instance, as explained in L'Ecuyer and Glynn (1993) (see also Equations (12) and (17)), unbiased
estimators of 1(On)W'(On) or 12(O,)a'(#,) might be available, and can be used in (2) instead of an
estimator of a'(0,n), to find a root of a'(0). For such estimators, however, -f; must be replaced by

" = [e(0~")•(0)]- 1 = (1 -0)7

and
- = 12()()- = (1 - )2,

respectively.

Choosing the right sequence of gains yn turns out to be rather important in practice. For
example, if -t0 is too large, On will bounce around too much while if 70 is too small, On will move too
slowly towards the optimum (see (3)). Unfortunately, in practical applications, one often has little
idea of the right 7o. This is why people have introduced various "adaptive" approaches, whose aim
is to speed up convergence by (roughly speaking) reajusting dynamically the sequence of gains.
Some variants also rescale the derivative estimators, which is formally different, but practically
similar. These methods are often very helpful. But unfortunately, some of them do not always
work well and might even slow down the algorithm, as will be illustrated by our experiments. We
will now describe a few of those adaptive approaches.

Kesten (1952) has proposed a rule under which instead of diminishing /,, at each iteration,
one diminishes it only when the sign of the gradient estimate (for one parameter) is different from
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the one of the previcus iteration (i.e. when the change on the parameter changes direction). The
heuristic idea is that if the parameter keeps moving in the same direction, it should be because we
are still far away from the optimum and so, we let it move faster. That heuristic might help in
situations where we start really far away from the optimum, and where the change on the parameter
at each iteration tends to be very small.

Andrad6ttir (1990, 1991a) has proposed a variant of SA whose aim is to insure convergence
even if E is unbounded, or to reduce the "bouncing around" behavior when the function a(0) is
too steep. At each iteration of SA, it uses two independent derivative estimates, say Y,, and Y,2,
based on any DET like FD, FDC, LR, or IPA, and computes the "modified" derivative estimator

max(c, I1YI) + max(c, IY.f)' (4)

where c > 0 is a predetermined constant (a parameter of the algorithm). That Y,, is then used in
SA as usual (see equation (2)). Assuming that Y,, and Y,2 are both unbiased derivative estimators,
and under a few additional conditions, Andrad6ttir proves the convergence of her algorithm to the
optimizer. Since each Y,, requires two independent estimates, SA will have less iterations available
for a given computer budget with this method than with the regular one. The motivation for this
method is to reduce the step size when the function is too steep. It behavior will depend on the
choice of c. If c is near zero, the derivative estimates are more or less "normalized". That is, if the
two independent estimators are not too noisy, Y,, should be near ±2. On the other hand, if C is
large, the algorithm becomes equivalent to the regular one by rescaling the sequence {7,-, n > 0}
appropriately (multiply -,, by c/2), except that an average of two estimators is taken instead of
just taking one estimator at each SA iteration. Further, in the case of a steady-state model as
we have here, if we simulate for a fixed number of customers to obtain Y,,, and then continue
the simulation for a fixed number of customers to obtain Y,2, then Y,,' and Yn2 will typically be
correlated, introducing a bias in (4).

Azadivar and Talavage (1980) had previously proposed a somewhat related (heuristic) nor-
malization scheme, based on only one derivative estimator. They implemented their method in a
package called SAMOPT. More specifically, they obtain at each iteration a FD estimator Yn, and
replace it by its sign, that is Y, := Yn'/IYnI. Of course, the same can be done with FDC, LR, or
IPA. One difficulty with that estimator is that it could remain too noisy near the optimizer. For
example, if Yn' has low variance and E[YI] • 0 near the optimum, then Yn' should be near zero,
which is fine if we use it directly in (2). Replacing it by its sign is really not a good idea in this
case. In their SAMOPT algorithm, Azadivar and Talavage also implemented some heuristics, with
specially tuned parameters, to define the sequences 7,I and c,n adaptively. These heuristics seem
to work well for the examples given in their paper, but we are skeptical concerning their general
robustness.

Perron (1992) suggested the following heuristic: start with a very large 7o and each time the
parameter value wants to bounce from one boundary of 0 to the opposite boundary in one iteration,
divide -yo by 2 and reset the parameter value to the midway point between the boundaries. This
rule can be easily adapted to the multidimensional case if the admissible region ( is a rectangular
box and if each component of 0 has its own N,,: just apply it to each component individually.

Wardi (1988) proposed a SA variant which takes bigger stepsizes by taking -,n = yon-• for some
7 < 1, and tn increasing with n. Under some assumptions, he showed convergence in zero upper
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density to the optimizer. Dupuis and Simha (1991) went further; they advocated using a constant
stepsize, namely 7,Y = -y for all n, with an increasing tn. They proved a.s. convergence under some
conditions, but did not obtain convergence rates, nor numerical results.

Some adaptive approaches attempt estimating a"(0*) along with the estimation of 0* (Fabian
1968, Venter 1967). A major drawback of those adaptive approaches is high computational costs,
especially in the multidimensional case.

Recently, Polyak (1990) has introduced the interesting idea of taking the average of the values of
On over all the iterations, instead of just taking the value of On from the last iteration, as an estimator
of the optimizer. Roughly speaking, he showed under some conditions that for 1/2 < 7 < 1, the
average converges to 0* at the optimal rate for whatever 7o. Kushner and Yang (1991) and Yin
(1992) gave different proofs, requiring less restrictive assumptions. They also suggested taking the
average over a moving window, whose size may increase linearly with n. More specifically, the
estimator of 0* has the form

1 n
n' =m Z : O. (5)

M--n-m+I

Again, the required assumptions are not verified by our M/M/1 example for most of the SA-DET
combinations. Therefore, the averaging approach should be viewed here as an heuristic.

4. Derivative Estimation and Implementation Issues

At iteration n of SA, to obtain a derivative estimator Y1,, we simulate the system for one or more
"subrun(s)" of finite duration tn, starting from some initial state s,n. When the queue is not
empty at the end of an iteration, we must be careful to generate the new service time only at the
beginning of the next iteration, i.e. after modifying the parameter. For some of the DET variants,
tn is a deterministic truncated horizon, representing the number of customers in the subrun. Other
variants exploit the regenerative structure (the system regenerates whenever a customer arrives into
an empty system), and for those, tn represents (here) the number of regenerative cycles in the subrun
at iteration n. In our implementations, we insisted on using exactly the same simulation program
for all of the DET variants. The simulation model and the variants were in fact implemented in two
different "modules", the latter being model independent. We now summarize the DET's described
in L'Ecuyer and Glynn (1993), and discuss their implementation.

Let Wi, Ci, and Wi* = Wj + (i denote the waiting time, service time, and sojourn time of
customer i. The initial state of the system is the waiting time of the first customer, W1 = s, where
s E ( = [0, c] for some fixed constant c. For t _> 1 let

t

ht(0,s,w) - W- , (6)

where the sample point w can be viewed as representing the sequence of i.i.d. U(0, 1) variates
underlying the simulation. For some DET variants, the initial state s, at the beginning of iteration
n is s, = 0 (empty system) for all the subruns, while for other variants, the final state of each
simulation subrun is taken as the initial state for the next one (projecting on S whenever necessary).
Since we are interested in steady-state behavior, taking a terminal state of the previous iteration
appears intuitively better.

5



4.1. Finite Differences

For the finite-difference (FD) estimators, one takes a positive sequence {c,,, n > 1} converging to 0.
At iteration n, simulate from some initial state s- E S at parameter value 0; = max(O,. - c,, ,
for t,, customers. Simulate -1so (independently) from state s+ E S at parameter value 0+ =

min(O, + Cn, imnx) for t, customers. Let w- and w,+ denote the respective sample points. The
(centered) FD estimator is then

Y,~ ~ ~ =+"0)+ nn n- nn_ 7
(0 - ;)t,

The FDC estimator is the same, except that one takes w• = w+ (common random numbers across
the subruns at each iteration), starts the two subruns from the same state: s- = s+ = sn, and

synchronize,

For FD, one can choose the initial states of the subruns as follows. Start the first subrun of
iteration n from state s, E 9. Then, take the terminal state of any given subrun as the initial state
of the next one. (Project on S whenever necessary.) For S,+l, take the terminal state of the last
subrun of iteration n. Still, the two subruns of a given iteration can be ordered in two different
ways. More generally, if 0 has dimension d, one can permute the 2d subruns of a given iteration in
any given way, and select the terminal state of any subrun for S,.+1. It is not clear what the best
way of doing this is, if any. Another approach is to take the same initial state for each subrun:
s- = s+ = Sn, but this is more costly to implement (we shall discuss that in a moment) and there
are still different possibilities for the selection nf ,n+1 - What we did in our experiments is to take,
as initial state s,,+,, the final state of the subrun at iteration n which had been performed with
parameter value the closest to the parameter value O,+ used at iteration n + 1. In general, if 0 is a
d-dimensional vector, the same heuristic can be applied for each component of 9 to choose the new
parameter value among the 2d terminal states of the previous iteration. We also made experiments
for which we took s,n = 0 for all n (all subruns starting from an empty system).

For FDC, one can take sn = so E S for all n, for some fixed so (e.g., so = 0), or Sn+I can
be one of the two terminal states of iteration n (projecting on S if necessary). Implementing this
method for complex simulations is not without pain. Saving the simulation state means saving
the states of the random number generators, the event list, all the objects in the model, etc. In
practice, many objects in the model are pointers to data structures that can be created, modified
or destroyed dynamically, and whose types have been defined by the programmer. When saving the
state of the system, one cannot only save the pointer values, but must make an explicit "backup"
copy of all these structures. When restoring the system to a given state, these must be recopied
again. This is different than saving and restoring the state of the program, because some variables
associated with the SA and FD or FDC algorithms (e.g., the index of the current subrun for FD(C))
should not be saved and restored. Usually, the simulation package cannot do that and specific code
must be written. In fact, it would be very difficult to implement "state saving" facilities in a
general simulation package, because typically, the pac':age has no way of knowing with certainty
the structures of all the dynamic objects created by the user. All this implies overhead not only
for the computer, but also for the programmer. Another source of programming overhead in FDC
comes from the need to insure synchronization of the random numbers across the subruns.

Another FD approach is to estimate l2(Of)a'(Ot), instead of ct(O9), using finite differences with
a regenerative approach. This is adapted from Glynn (1986), without the arctan transformation.
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At iteration n, simulate for 2t, independent regenerative cycles, using parameter value On for the
odd numbered cycles and 0+ = min(0n + c,, im,-) for the even numbered cycles. Let rj be the
number of customers during the j-th cycle and hj be the total sojourn time for those ri customers.
The (forward) regenerative FD estimator is then

n = I " ( 2 r2 j-i - h2 ,. 1r2i + r21T2i-dC'(,00)) (8)
tn On+-lO

4.2. Perturbation Analysis

The IPA estimator is just C'(8) plus the sample derivative of ht(O, s, W)/t for a fixed W, namely, at
iteration n,

Y1 = C'(On) + h'(O., Sn, ,)/tn . (9)

The sample derivative is

h'(8,s,w) = (••10)
19 (10)ln1 U)

i=1 J=V1, i=1 j=z'

where vi is the first customer in the busy period to which customer i belongs. One can either
impose vi > 1, or allow zero or negative values of vi. The former means that the inside sum in (10),
called the IPA accumulator, is reset to zero between iterations. The initial state sn can also be
either 0 for all n (always restart from an empty system), or be taken from the previous iteration.

See L'Ecuyer and Glynn (1993) for more details.

One regenerative version of IPA goes .s follows. For a given regenerative cycle, let r be the
number of customers in the cycle, and h'(0, 0, w) be the sample derivative for that cycle. At iteration
n, take tn regenerative cycles, let r' and h. denote the respective values of r and h1(O,0,W) for the

j-th cycle, and let T,, = rj. One has the regenerative IPA estimator

Yn = C'() ' '+ " -Oln(1 - UT). (11)~jt=l rj T =n EE•
i=1 j=vii

This estimator is biased for a'(0n). On the other hand, the alternative regenerative IPA estimator

t1

Y = +12)
n j=1

suggested by Fu (1990), is unbiased for O(On)a'(On), even fort,, 1.

When cn is very small, FDC becomes (in principle) essentially the same as IPA. But beware
of implementation details, they can make a big difference. For example, it is shown in L'Ecuyer

and Glynn (1993) that SA with IPA, with a fixed number of customers per iteration, converges
weakly to the optimizer, provided that the IPA accumulators are kept (no reset) between iterations.

In Appendix 1, we show that SA with FDC, with a fixed number of customers per iteration,
converges to a different value than the optimizer r. Our numerical results also illustrpte that. The

intuitive explanation is that if the parameter converges, its change eventually becomes negligible and
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keeping the IPA accumulator across iterations yields a derivative estimator whose bias eventually
becomes negligible even with constant (and small) t,,. With FDC, on the other hand, there is
no similar transfer of information between iterations, so t0at with constant t", the bias of the
derivative estimator does not vanish. Note that exactly tie same problem occurs with IPA if the
IPA accumulator is reset to zero between iterations. The latter case really corresponds to the limit
of FDC as c,, -- 0.

4.3. Likelihood Ratio

For a simulation of t customers, with initial state X, = s, one has the associated score function

S(O, s,w) = E - In be(() = F 9 2

The (truncated horizon) LR derivative estimator at iteration n is then (L'Ecuyer and Glynn 1993):

Y,ý = C'(O,,) + htn(O,,, s.,) ( Os",,)/tn. (13)

A slightly different estimator, which uses the score function as a control variate, is

Y,, = C'(o8) + [h,.(o,,, w,) - W(O)]Stn(0,,s,)It,. (14)

It has the same expectation as (13), but reduces the variance from O(t,) to 0(1) at 0 = 0" (see
L'Ecuyer and Glynn 1992a). Of course, in practice, w(0*) is unknown, but it can be estimated.
Another variant of (13) is the triangular LR estimator

Y. = w; ,(15)
i=1 j=1

in which, roughly speaking, each customer has its own score function.

One problem with LR estimators is (typically) their large variances. Sometimes, this can be
countered by exploiting the regenerative structure. Suppose we simulate the system for tn regen-
erative cycles at iteration n, using parameter value On. Let ri be the number of departures during
the j-th cycle, h, the total system time for those rj customers who left during that cycle, and Sj
the score function associated with that cycle. A (biased) regenerative LR estimator of a'(0,) is

then (see Glynn 1987):
tn tn tn tn

SE hjsj -- E h , srjS

Yn = C'(0n)+ j=1 j=-1 3j=d =1 (16)tn 2

On the other hand, instead of trying to estimate a'(0n), one can rather estimate t 2 (G,)0C'(•n), as
suggested by Glynn (1986). ZFrom 2tn regenerative cycles, one obtains the unbiased estimator:

l 1 (1 [h2iS 2 ir2j-. + h2 1-. S2j-lr 2j - h2 .j-S2jr2j - h2jS 2j-.r 2zj-.] + Tr2jT 2j-.C'(On))

(17)
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5. The experimental setup

In these experiments, we have tried many SA-GET combinations, or variants. For each variant,
we made N simulation runs, each yielding an estimation of 09. The N initial parameter values
were randomly chosen, uniformly in 0, and the initial state was s = 0 (an empty system). Across
the variants, we used common random numbers and the same set of initial parameter values. This
means that the different entries of Table 1 are strongly correlated. Each run was stopped after a
(fixed) total of T ends of service. Hence, all variants were subjected to approximately the same
sequence of random numbers and, if we neglect the differences in overhead for the GETs, used
about the same CPU time. (The overhead was quite low in general, except for very small values of
tn, like t, = 1.)

For each variant, we computed the empirical mean 0, standard deviation Sd, and standard error
s, of the N retained parameter values. If yi denotes the retained parameter value for run i (i.e.
the value of On after the last iteration, for that run), the above quantities are defined by

-IN 1 N2=1I
y(; s Z (y

We also computed a confidence interval IJ on the expectation of #, assuming that v/-N(- E(O))Isd
follows a Student distribution with N - 1 degrees of freedom. This assumed limit distribution is
reasonable, because the limit theory for SA states that the estimators yi are typically asymptotically
normally distributed (Benveniste, Metivier, and Priouret 1987, Fabian 1968, Kushner and Clark
1978).

6. Numerical Results

6. 1. The Acronyms Used in the Tables

In the tables giving the numerical results, the acronyms FD, FDC, IPA and LR refer to SA combined
with the corresponding DET. An R appended to the acronym means that a regenerative approach
was used. For example, LRR refers to the regenerative version of LR given in (16), while IPAR
refers to the regenerative version of IPA given in (11). FDR86 and LRR86 refer to the regenerative
methods (8) and (17). IPARFU refers to the regenerative IPA method of Fu (1990), given in (12).
TLR means the "triangular" version of LR given by (15). CLR means the "control variate" version
of LR given in (14), while CTLR is the corresponding "control variate" version of TLR.

The symbol -0 means that the state was reset to s = 0 at the beginning of each iteration. The
symbol -Z following IPA means that the IPA accumulator was reset to 0 between iterations. The
symbol -S following FD means that instead of always simulating first at On - cn and then at 0" +cn,
we adopted the following heuristic rule: if the parameter has just decreased, simulate first on the
right (at 0,, + cn), otherwise simulate first on the left. The rationale is that if the parameter has
just decreased, the current state has been reached by simulating at a parameter value larger than
On, and should thus be a statistically "better" initial state for a simulation at On +c, than at On -C
(and symmetrically if the parameter has just increased).
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The symbol -K following the acronym signifies that Kesten's rule was used. The symbol -P
means that Perron's rule was used to reduce 7,, quickly at the beginning. The symbol -A means
that Andrad6ttir's method was used. The symbol -Av means that we used the averaging method
of Polyak (1990), Kushner and Yang (1991), and Yin (1992). For the averaging, we selected a
constant To and as soon as the number of simulated customers reached To, we started averaging
the 98,'s. In other words, we fixed To and the window size m in (5) was the number of iterations
performed with the last T - To customers.

6.2. Results for the First Example

Table 1 summarizes the results of an experiment we made with T = 106, N = 10, E = [0.01,0.95]
and C1 = 1. The optimal solution is 0" = 0.5. We computed 99% confidence intervals Io as
described in §5, and the entries for which I1 does not contain 0* are marked by the symbol " '"
in the tables. This could be the symptom of a parameter that converges to the wrong value, but
not necessarily so. In most cases, the convergence intervals do not contain the optimizer because
over a finite simulation length, the retained parameter value at the end of the SA procedure is a
biased estimator of the optimizer, and the squared bias converges to zero slowly compared to the
variance.

For all the methods whose results are given in the table, with a few exceptions, the algorithm
has been proved to converge to the optimizer (L'Ecuyer and Glynn 1993). The exceptions are
IPAR and FDC with constant t, (which converge to the wrong value), FD-S, SAMOPT, and the
methods which use Kesten's or Perron's rules. For most of the methods, however, the convergence
rate is unknown (although this is the subject of ongoing research). Exceptions are the regenerative
methods IPARFU and LRR86 with constant t,, for which SA converges at the canonical rate
when -yo is large enough. Indeed, since (12) and (17) are unbiased estimators of 1(09)a'(09) and

2(O,•)a'(O,), respectively, and their variance is bounded uniformly over e, it follows from the
discussion of §3 that n-1/ 2(0, - 9') converges to a centered normal for those two methods when
"-= 1 and -yo > (1 - 0")-y,/2 (for IPARFU) or -o > (1 - 0") 2-y;/2 (for LRR86). For the other cases,
one can get some empirical idea of the convergence rates by looking at Table 2.

6.3. Infinitesimal Perturbation Analysis

The DET which performs the best for this example is clearly IPA. One of the smallest MSE,
among the variants that we have tried, was obtained by the SA-IPA combination with a fixed
number of customers per iteration, with In• = 0.03n-', and with the IPA accumulator not reset
to zero between iterations. The regenerative SA-IPA method proposed by Fu, as well as SA-
IPA with averaging, also yielded similar MSE values. However, it appears very clearly that the
performance of most variants depends heavily on the choice of the constant 70, which scales the
sequence of gains {I-, n > 1). Recall that in the case where all iterations of SA use unbiased i.i.d.
gradient estimators, the (asymptotically) optimal sequence is t,, = -Y;/n (Equation (3)). Here,
for most of the DET variants, we do not have i.i.d. unbiased estimators. But for IPA with a
fixed number of customers per iteration, it seems that we have a good approximation of it: as n
increases, Y, should approach some steady-state distribution, and its expectation should converge
to w'(#*) (the bias should become negligible), because the parameter 8 converges to 0*. The proof
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TABLE 1: Experimental results for T = 106, N = 10, and C' = 1 (0" = 1/2).
For the values marked with a, the 99% confidence interval does not contain 09.

fn Yn Sd __

IPA 10 100n- 1  .02050 .01953
IPA 10 n-1  .00227 .00216
IPA 10 .1n-1 .00091 .00087
IPA 10 .05n-I .00068 .00066
IPA 10 .04n- 1  .00063 .00062
IPA 10 .03n- 1  .00057 .00057
IPA 10 .02n-1 .00061 .00068
IPA 10 .Oln-1  .00548 .00530
IPA 10 .001n-' .10614 .11974
IPA 1 .03n- 1  .00057 .00057
IPA 100 .03n-1 .00056 .00056
IPA n n- 1  .00195 .00185
IPA n .1n-1 .00068 .00066
IPA n .07n-1 .00060 .00060
IPA n .05n-1 .00054 .00055
IPA n .04n- 1  .00061 .00070
IPA n .03n-1 .00128 .00170 4
IPA n .02n-1 .00464 .00608
IPA 100 + n .07n-1 .00063 .00062
IPA 100 + n .05n-1  .00055 .00055
IPA 100 + n .03n- 1  .00053 .00056

IPA n .03n-1/ 2  .00202 .00192
IPA n .01n-1/ 2  .00132 .00125
IPA n .005n- 112  .00088 .00085
IPA n .003n-1/1  .00066 .00063

IPA n .001n- 1 /2  .01453 .01583
IPA n .01 .00272 .00356
IPA n .001 .00217 .00206
IPA n .0005 .00172 .00163
IPA n .0003 .00138 .00131
IPA n .0002 .00110 .00105
IPA n .0001 .00144 .00165
IPA n .00005 .01401 .01653
IPA n 11 2  .01 .01800 .01833
IPA n1/2 .001 .00462 .00477

IPA n1/2 .0001 .00222 .00211
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TABLE 1 (continued).

t_ 7_ n Sd S,

IPA-Z n n-1  .00192 .00189
IPA-Z n .2n-1  .00087 .00100
IPA-Z n .ln-I .00065 .00093
IPA-Z n .07n-I1  .00059 .00103
IPA-Z n .03n- 1  .00180 .00528
IPA-Z n .ln-3/ 4 .00160 .00160
IPA-Z n .05n- 3/4 .00111 .00117
IPA-Z n Oln-3/4 .00081 .00171 -
IPA-Z n .01n-'/ .00125 .00130
IPA-Z 10 n- 1  .00169 .07365 4
IPA-Z 10 .03n-1  .00165 .07461
IPA-0 n .ln- .00065 .00103

IPA-K 10 .01n- 1  .00057 .00057
IPA-K 10 .001n-' .03972 .03811
IPA-K n .03n- 1  .00058 .00058
IPA-K n .01n- 1  .00300 .00312
IPA-KP 10 100n-1 .00225 .00215
IPA-KP 10 n- 1  .00175 .00167
IPA-KP 10 .03n-, .00085 .00082
IPA-KP 10 .01n- 1  .00057 .00057
IPA-KP n 100n-I .00175 .00166
IPA-KP n n-I .00135 .00129
IPA-KP n .03n- 1  .00058 .00058
IPA-KP n .01n- 1  .00300 .00312

IPAR 5 .03n- 1  .00079 .06188 4
IPAR n n- 1  .00203 .00200
IPAR n .ln- .00067 .00101 4
IPAR n .03n- 1  .00129 .00424 -4
IPAR n .01 .00334 .00344
IPAR n .001 .00191 .00186
IPAR n .0001 .00590 .00614
IPARFU 1 .In- .00135 .00129
IPARFU 1 .03n- 1  .00072 .00070
IPARFU 1 .015n- 1  .00056 .00056
IPARFU 1 .01n-1 .00059 .00060
IPARFU 10 .03n- 1  .00072 .00070
IPARFU 10 .01n- 1  .00060 .00060
IPARFU 10 .005n- 1  .00539 .00547
IPARFU 10 .001n- 1  .07176 .09161
IPARFU n .Oln- 1  .00378 .00379
IPARFU n .001 .00244 .00232
IPARFU n .0001 .00086 .00083
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TABLE 1 (continued).
E t' 7'n 8d 3e

IPA-A 0.01 n .03n- 1  .03067 .03075
IPA-A 0.1 n .03n- 1  .00125 .00121
IPA-A 1 n .03n- 1  .00055 .00054
IPA-A 10 n .03n- 1  .04802 .04703
IPA-A 100 n .03n- 1  .14211 .16153
IPA-A 33 n n- 1  .00058 .00058
IPA-A 1 n n- 1  .00256 .00244
IPA-A 1 n 100n-1 .15651 .17652
IPA-A 100 n 100n- 1  .00249 .00238
IPA-A 0.1 10 .03n- 1  .00111 .01145 4
IPA-A 1 10 .03n- 1  .00080 .01444
IPA-A 10 10 .03n- 1  .02878 .02737

of Proposition 6 of L'Ecuyer and Glynn (1993) is in fact based on this reasoning. Therefore,
70 = 7- = 1/32 = .03125 z .03 should be expected to yield the best asymptotic performance, and
this explains our numerical results. With a larger -to, there is too much noise, while with a smaller
7o, convergence is slower because the SA steps are too small. According to (3), for -o < .0156,
we should not even expect to obtain the canonical convergence rate. When t,, is not constant, the
above reasoning is not necessarily true. For example, with t,, = n, yo = .03 no longer gives the best
performance here; 70 = .05 is much better.

The idea of taking f,, = 7on-y for some - < 1, with increasing t., as discussed in Wardi (1988)
and Dupuis and Simha (1991) (for -t = 0), does not bring any improvement here. The best 7o is
smaller for smaller -, but even with the best 70, the results are not quite as good as when using
the standard sequence (-t = 1).

The performance of IPA also deteriorates when the IPA accumulator is reset to zero between
iterations (IPA-Z or IPA-0). This resetting introduces a bias, which forces one to increase t, with n,
otherwise 0,, converges to the wrong value. For example, with t,, = 10, 0e converges to somewhere
around 0.575 instead of 0.5, and this is why s, is much larger than sd. For IPA-Z with t, = n, On
converges to e* (see Proposition 5 of L'Ecuyer and Glynn 1993), but the numerical results suggest
that the best value of -t here is much larger than 0.03. When -o is too small, On still converges
to the -,ptimum, but very slowly, and (apparently) in such a way that the variance of the noise
converges significantly faster than the squared bias. As a result, the confidence interval Is, based
on the N final values of On, is very likely not to cover #*. This is what happens, for instance, for
IPA-Z with 7-o < 0.1.

So, the results are very sensitive to the choice of -o. In §3, we have described a few "adaptive"
approaches designed for the (usual) case where the optimal 70 is unknown. We now look at how
well they perform here. Kesten's rule helps somewhat when -to has been chosen slightly too small,
but does not prevent disaster when -o is much too small. Combining the heuristics of Perron and
Kesten appears effective; it gives reasonable results even with a much too large initial 7o. It is not
clear whether this observation can be extrapolated to more general systems, but if so, a suggested
practical strategy could be to start with a large value of 7o and use both Perron and Kesten rules.
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TABLE 1 (continued).
T - To (window) t,, 7,n Sd Se

IPA-Av 1000000 10 100n-1  .00070 .00846
IPA-Av 1000000 10 n-1  .00058 .00061
IPA-Av 100000 10 n- 1  .00220 .00209
IPA-Av 10000 10 n-1  .00296 .00281
IPA-Av 1000 10 n-1  .00231 .00220
IPA-Av 100000 10 .n- 1  .00074 .00072
IPA-Av 100000 10 .05n-1  .00060 .00060
IPA-Av 1000000 10 .03n-1  .00055 .00060
IPA-Av 100000 10 .03n-' .00052 .00053
IPA-Av 10000 10 .03n- 1  .00058 .00058
IPA-Av 100000 10 .01n- 1  .00562 .00544
IPA-Av 100000 10 .001n-1  .10635 .11998
IPA-Av 1000000 10 n-5 / 6  .00059 .00075
IPA-Av 1000000 10 n- 3 / 4  .00058 .00112 4
IPA-Av 100000 10 n-3/4 .00259 .00246
IPA-Av 10000 10 n- 3/4  .00526 .00499
IPA-Av 1000 10 n- 3 / 4  .00753 .00773
IPA-Av 100000 10 .03n-3/4  .00167 .00159
IPA-Av 100000 10 .01n- 3 / 4  .00102 .00099
IPA-Av 100000 10 .005n-3/4 .00068 .00067
IPA-Av 1000000 10 n-'/2  .00068 .01009 ,
IPA-Av 100000 10 .01n-/ 2  .00271 .00257
IPA-Av 100000 10 .001n- 1 /2  .00131 .00126
IPA-Av 100000 10 .0005n-1/ 2  .00093 .00090
IPA-Av 100000 10 .0002n-1/ 2  .00257 .00299
IPA-KP-Av 100000 10 100n-' .00189 .00179
IPARFU-Av 1000000 1 100n-1  .00083 .02437 ,
IPARFU-Av 1000000 1 n-1  .00058 .00059
IPARFU-Av 1000000 1 .ln-1  .00051 .00053
IPARFU-Av 100000 1 .In- .00111 .00107
IPARFU-Av 1000000 1 .015n-I .00052 .00053
IPARFU-Av 100000 1 .015n-' .00052 .00052
IPARFU-Av 1000000 1 .001n-' .07402 .08674
IPARFU-Av 1000000 1 .001n-1/2 .00052 .00050
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TABLE 1 (continued).
t_ In ¢_ _Sd

FD n n-1  .ln-1/ 6  .00979 .00967
FD n .n-' .n-1/ 6  .00150 .00251 ,
FD n .03n-1 .1n-1/ 6  .00807 .01708 ,
FD 100 + n n-'1 In-' 1 6  .01075 .01044
FD 100 + n .03n-' .n-1/ 6  .00160 .00216 a
FD n .1n-/ 4  .n-1/ 6  .00676 .00643
FD n .03n-3/ 4  .n-1/ 6  .00200 .00252
FD n .01n-3/4 .ln-1 / 6  .00285 .00559 4
FD n .03n-1/ 2 .ln- 1/6  .00946 .00930
FD n .0,l- 1/2  .n- 1/6  .00406 .00395
FD-S n n-' .n- 1/6  .00760 .00732
FD-S n .n- 1  .1n-1/ 4  .00467 .00443
FD-S n .n- 1  .n-1/ 6  .00352 .00334
FD-S n .03n-' .n- 1/ 2  .02581 .02480
FD-S n .03n- 1  .n-1/4 .00583 .00751 4
FD-S n .03n-' .In-1/6 .00440 .00750 ,
FD-S n .ln-3/4 .ln-1/6 .00682 .00647
FD-S 100 + n .n- 3/4 .ln-1'/6 .00584 .00554

FDR86 1 .01n- 1  .n-1/2 .08867 .14053 ,
FDR86 1 .01n- 1  .n-1/4 .02266 .02512
FDR86 1 .In-1  .ln-1/ 6  .01633 .01549
FDR86 1 .03n-! .1n-/6 .00819 .01019 <
FDR86 1 .01n- .1n-1/ 6  .00609 .00585
FDR86 1 .005n- 1  .n-1/ 6  .00802 .00761
FDR86 5 .03n- .ln-'/4 .03666 .03682
FDR86 5 .03n- .ln-1/6 .00511 .00485
FDR86 5 .Oln-I .n-1/4 .01683 .01597
FDR86 5 .01n- .ln-1/ 6  .00309 .00311
FDR86 5 .005n- .ln- 1/6  .00468 .00480
FDR86 n .01n- .n- 1 /6  .00227 .00216
SAMOPT n I 1_ 11_.08045 .17934 ,
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TABLE 1 (continued).
t, 7fn C, sd 8,e

FDC 5 n- .in-' .00115 .15253
FDC 5 .03n- .ln-1  .00928 .15485
FDC 100 .03n-I .ln- 1  .00104 .00546
FDC 100 + n .03n- 1  .n-l .00112 .00192 4
FDC n n- 1 .n- 1  .00178 .00176
FDC n n-1  .ln-/s .00193 .00184
FDC n .2n- .ln-1  .00122 .00126
FDC n .n- 1  .n- 115  .00109 .00105
FDC n .n- 1  .1n-1/ 2  .00104 .00114
FDC n .n-l .1n- .00102 .00114
FDC n .ln-l .01n- 1  .00102 .00114
FDC n .in- 1  .001n- 1  .00102 .00114
FDC n .n- 1  .001n- 2  .00102 .00114
FDC n .07n- 1  .n- 1  .00094 .00125 -
FDC n .03n-I .1n- 1  .00276 .00686 4
FDC n .n- 1 /2 .n- 1  .00167 .00159
FDC n1/ 2  .ln-1  .n- 1  .00115 .00722 4
FDC n .03n-1/ 2  .1n-l .00175 .00173
FDC n1/ 2  .03n-1  .n- 1  .00297 .01880
FDC-0 n .n- .ln-1  .00106 .00129
FDC-0 n .03n- .1n- 1  .00342 .00781
FDC-K n .03n-1  .n- 1  .00093 .00139 4

FDC-K n .01n- 1  .n- 1  .00240 .00651 4

FDC-KP n 100n- 1  .ln-1  .00179 .00180
FDC-KP n n- .In-1  .00165 .00171
FDC-KP n .03n- 1  .n- 1  .00093 .00139 ,
FDC-KP n .Oln-i .1n- 1  .00240 .00651 4
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TABLE 1 (continued).
tn 7Yn 8d S,

LR n1/3 .In- .00431 .02015

LR n1/3 .03n-' .00884 .04538

LR nl/2 n-l .03038 .02899

LR n1/ 2  .n-' .01001 .01017
LR n1/2  .03n-' .00640 .01597
LR n2/3  .1n-l .02401 .02280
LR n2/ 3  .03n- 1  .01365 .01501
LR n .n- 1  .09962 .09491
TLR n1/2 .n-1 .00535 .00632

TLR n1/2 .03n-1 .00454 .01526 4

CLR n 112  n-1  .00772 .00749
CLR nl/2 .n-l .00383 .00582 4

CLR n1/ 2  .03n- 1  .00452 .01564 ,
CLR-0 nl12  .In-l .00990 .01073
CLR-0 nl/ 2  .03n-I .00760 .02194

CTLR nl/ 2  n-l .00533 .00615

CTLR nl/2 .n- 1  .00222 .00575 -

CTLR n112  .03n-I1  .00310 .01518 -
CTLR n 2/3  n-1  .00706 .00688
CTLR n2/3 .2n- 1  .00395 .00387
CTLR n2/3 .In-' .00271 .00317
CTLR n2/ 3  .03n- 1  .00273 .00907 4

CTLR n .ln- .00503 .00524

LRR n2/3 .03n-1 .00385 .02631 4

LRR n n-1 .00449 .00456
LRR n .2n- 1  .00286 .00313
LRR n .n- 1  .00240 .00318
LRR n .03n-1  .00396 .01449 4
CTLRR n 2/3  .03n- 1  .00244 .02239

CTLRR n .2n-' .00220 .00268
CTLRR n .In- .00186 .00283
CTLRR n .03n- 1  .00256 .01251
LRR86 1 n-? .01161 .01108

LRR86 1 .n- 1  .00556 .00531
LRR86 1 .03n-' .00383 .00368
LRR86 I .01n- 1  .00308 .00293
LRR86 1 .005n- 1  .00372 .00376
LRR86 5 .03n- 1  .00396 .00376
LRR86 5 .01n- 1  .00340 .00323
LRR86 5 .005n- 1  .00107 .00123
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Andrad6ttir's algorithm does not help here. With the "optimal" choice of f and t,, = n, its
performance is the same as the standard algorithm, but for other values of c, it is much worse. Note
that the optimal c depends on 70. For example, with tn = n, c = 1 with -70 = .03 behaves pretty

much the same as c = 33 with yo = 1.0. With constant tn (like tn = 10), it fails completely. The
reason is that here, Yn' and Yn are correlated, and therefore the combined estimator (4) is biased.
That bias goes to zero if t,, increases with n, but not if t, is held constant.

With IPAR, the number of ends of service during the t n regenerative cycles is now random,
and the derivative estimator is biased because it is a ratio with that number in the denominator.
So, with tn held constant, SA with IPAR converges quickly, but to the wrong value. However, the
bias goes to zero as t n goes to infinity, and as proved in the companion paper, SA-IPAR converges
towards the optimum with t n = n. For small 70, though, se is much larger than sd, which indicates
that the squared bias converges more slowly than the variance.

The IPARFU variant works pretty well, even with tn = 1. Here, each Yn is an unbiased estimator
of 0'(On)t(On). These estimators are also approximately i.i.d. when On converges to 06. However,
the optimal 70 here is ; = 1/64 t 0.0156. The numerical results agree with that.

The averaging method gives no significant improvement over standard SA with a well chosen
sequence In, but good improvement when -to is larger than the optimum and the window is wide
enough. If -yo is much too large (e.g., -yo = 100), averaging still reduces the variance but there is
a highly significant bias, except if we combine averaging with Kesten and Perron's rules, in which
case we obtain very good results. Convergence is not speeded up significantly by averaging when

7o is much too small (e.g., 7o = .001). If we take 7- = 7on-1 for -y < 1 (instead of - = 1), with

averaging, we still obtain fair results, but not quite as good as with -Y = 1. Further, the best Yo
is smaller for smaller y, and convergence is still very slow when 7o is too small or much too large.
This is the same kind of behavior that we have observed for IPA with -Y < 1, without averaging.

All of this suggests taking -to on the "large" side when its optimal value is unknown, and
averaging with a wide window, perhaps combined with the heuristics of Kesten and Perron.

6.4. Finite Differences

In general, FD without the common random numbers gives a rather large MSE. We see however
that if the sequences -,n and cn are chosen in the best possible way, the performance could still
be acceptable. FD-S is sometimes better than FD, but not always. FDR86 resembles LRR86 to
some extent: at each iteration, it computes an estimator of a'(On)12 (On). So, the optimal Yo in

this case should be -=o = (1 - ")2 /&'(0) = 1/128 z 0.0078. This agrees with our numerical
results. SAMOPT (Azadivar and Talavage 1980) is clearly not competitive for this example. The
parameters implemented in the SAMOPT package might have been well tuned for some classes of
problems, but do not seem to always work well.

For both FD and FDC, when tn is fixed to a constant, convergence is to the wrong value, as
for IPA-Z, and as discussed in the Appendix. The results of FDC with tn = 5 illustrate that:
convergence is quick, but the large value of se indicates that the limit is not 0*. Even for tn = 100,
the bias is still quite apparent. In general, FDC behaves pretty much the same as IPA-Z. This is to

be expected, since IPA-Z is the limiting case of FDC as cn --+ 0. The only significant difference is
that the number of customers per iteration required by FDC is twice that of IPA-Z. Therefore, for
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a fixed "budget" of T customers, less SA iterations will be performed with FDC, and this explains
its slightly larger MSE. For FDC and IPA-Z, we see that the best value of 7o is larger than 0.03.
Convergence is slow when -y0 is too large, while when yo is too small, not only the convergence is
excruciatingly slow, but trusting the confidence intervals is also misleading. Using FDC-KP with
an initially large 7o looks like a good heuristic.

6.5. Likelihood Ratio Derivative Estimators

The LR methods in general have trouble due to their large associated variance. They give the worst
numerical results here. For the non-regenerative variants, when t, grows more slowly, the variance
is usually smaller, but the bias then goes down much too slowly compared to the variance, and
we get the same problem as for IPA-Z and FDC: we cannot trust the confidence intervals. This

is what happens, for instance, with t, - n'/ 3 . Among the truncated-horizon (non regenerative)
variants, CTLR is a significant improvement over LR, but falls far behind IPA and FDC with good
parameter choices.

The regenerative LR variants perform better. The best are CTLRR with t, = n and LRR86
with t, = 5. For the latter, the optimal 70 is around :y; . 0.008. With t, = n2/3, for both LRR
and CTLRR, the bias goes down too slowly and J9 does not contain 0". Nevertheless, the MSE of
all the LR variants given in this table converges (slowly) to zero, as proved in L'Ecuyer and Glynn
(1993).

6.6. Shorter and Longer Runs

We made other experiments with 14 = 10 , and 107, for some of the variants, to see how s,
evolves with the computer budget T. We took N = min(10, 10"/T). The results are given in
Table 2. The fact that FDC with tn = 5 converges to the wrong value is obvious from this table:
se clearly fails to converge to zero. For all other variants, the results indicate that the s, converges
to zero, in accordance with the theory. Further, for many of the variants, the confidence intervals
appear to become increasingly reliable as T increases.

6.7. Other Traffic Intensities

We also made other sets of experiments with C, = 1/25 (for which 0* = 1/6) and C1 = 25 (for

which 8* = 5/6). The results appear in Tables 3-4. For C, = 1/25, the traffic intensity for 0 near

8" is low, and we get a much lower variance than for C1 = 1. The opposite is true for C1 = 25. The

relative "rankings" of the algorithms are about the same. One exception is LRR86, which becomes

much less competitive in higher traffic.

Note that the optimal 7y0 here is no longer 1/32. For C1 = 1/25, one has 7Y = 125/2592 Z 0.0482,

10 ; 0.0402, and -=I " 0.0335, while for C1 = 25, one has 7t = 5/2592 z 0.0019, 1.* = 0.00032, and

;z 0.000054.
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TABLE 2: Values of s, for different values of T, for C1 = 1.
t_ 'In Cn Se

_10
4  105 106 107

IPA 10 .03n-' .00753 .00210 .00056 .00022
IPA n .05n-I .00788 .00222 .00055 .00019
IPA n .02n-' .02844 .01288 .00608 .00283
IPA n .001 .00899 .00378 .00205 .00167
IPA-Z n .n- 1  .00989 . .00261 • .00093 4 .00025
IPA-Z n .03n-' .04381 - .01592 4 .00527 4 .00175
IPA-KP n 100n- 1  .01623 .00440 .00166 .00075
IPA-KP 10 100n-' .02343 .00761 .00214 .00116
IPA-KP 10 .01n-v .00891 .00286 .00056 .00022
IPAR n .03n-1  .02666 4 .00963 4 .00424 4 .00145 4
IPARFU 1 .015n-I .00756 .00211 .00055 .00022
IPA-Av 10 n-1 .01117 4 .00239 .00061 .00073
IPA-Av 10 .03n-' .01164 .J0343 .00059 .00020
IPARFU-Av 1 .n- 1  .00820 .00235 .00052 .00046
FD n .n- 1  .n-1/ 6 .03850 - .00975 4 .00250 4 .00116
FD n .03n- 1 .An-1/6 .12724 4 .04582 - .01708 - .00557 4
FD-S n .n- 1  .n-1'/ 6  .02565 4 .00964 4 .00334 .00122
FDC 5 n-1 .1n- .15417 4 .15249 4 .15252 4 .15286 -
FDC n .n- 1  .n- 1  .01398 4 .00393 4 .00114 .00053
FDC-KP n 100n- 1  .n- 1  .02742 4 .00863 .00180 .00076
CTLR nl1 / 2  .n- 1  .04102 4 .01401 4 .00575 4 .00248 4
CTLR n 2/ 3  .1n- 1  .02612 4 .00826 4 .00316 .00157
LRR n .. 1n- 1  .03777 4 .00954 4 .00318 .00070
CTLRR n .ln- .02983 4 .00850 4 .00282 4 .00068
LRR86 1 .01n-i .02974 .00776 .00292 .00081
LRR.86 5 .008n- .04347 4 .00751 .00162 .00059
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TABLE 3: Experimental results for T = 106, N = 10, and C' = 1/25 (9 = 1/6).
t,, 'fn Cn 3d Se

IPA 10 .An- .00021 .00020
IPA 10 .05n-' .00014 .00013

IPA n .1n- 1  .00016 .00016
IPA n .05n- 1  .00502 .00503

IPA-Z n .In-1 .00020 .00020
IPA-Z n .05n- 1  .00656 .00729
IPA-KP n 100n-1 .00040 .00038
IPA-KP 10 100n- 1  .00043 .00041
IPA-KP 10 .01n- 1  .00078 .00112
IPAR n .05n-' .00496 .00569
IPARFU 1 .04n-' .00015 .00014
IPA-Av 10 100n- 1  .00023 .00566
IPA-Av 10 n-1 .00014 .00016
IPA-Av 10 .05n- 1  .00030 .00034
IPARFU-Av 1 .ln-1  .00021 .00020
FD n .In-' .n-'/ 6  .00087 .00093
FD n .05n- 1  .1n-1/6 .01865 .01981
FD-S n .In-' .n 1 / 6  .00083 .00081

FDR86 5 .03n-I .In-1/6 .00073 .00078
FDC n .ln-1  .n-l/ 6  .00016 .00016

FDC n .In- 1  .lIn- 1  .00017 .00019
FDC-KP n 100n- 1  .In-' .00029 .00039
CTLR n 1 / 2  .n- 1  .01381 .01465
CTLR n 2 / 3  .n- 1  .02808 .03317
LRR n .In- 1  .00041 .00061 4
CTLRR n .In-1 .00043 .00062 4

LRR86 1 .03n-I .00035 .00034
LRR86 5 .03n-_ .00034 .00032
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TABLE 4: Experimental results for T - 106, N = 10, and C1 = 25 (8 = 5/6).
t_ In Cn Sd Se

IPA 10 .01n- .00319 .00318
IPA 10 .002n-' .00122 .00125
IPA n .01n- 1  .00205 .00206
IPA n .002n- 1  .00410 .00413
IPA-Z n .01n- .00224 .00387 4
IPA-Z n .002n- 1  .00118 .01649 4
IPA-KP n 100n-1 .00610 .00707
IPA-KP 10 100n-1 .01957 .02083
IPA-KP 10 .001n-' .00323 .00322
IPAR n .01n- .00210 .00276
IPARFU 1 .001n- 1  .00228 .00228
IPARFU 1 .0003n- 1  .00278 .00421
IPA-Av 10 100n- 1  .00114 .02395
IPA-Av 10 n-1 .00140 .00137
IPA-Av 10 .002n- 1  .00134 .00138
IPARFU-Av 1 .01n- .00651 .00621
FD n .01n-1  .1n-1/6 .00442 .01458
FD n .002n-' .In-'/ 6  .00975 .06232
FD-S n .01n-' .n- 1 / 6  .00520 .00631
FDC n .01n- 1 .In- 1 6  .00231 .00563
FDC n .01n- .n- 1  .00234 .00626
FDC-KP n 100n- 1  .n- 1  .00860 .00876
CTLR n1/2 .01n- 1  .00517 .06826
CTLR n2/3 .05n-I .01169 .01783
CTLR n2/3 .01n- 1  .00593 .02031
LRR n .05n-w .01235 .01252
LRR n .01n- .00595 .00842
CTLRR n .01n- 1  .00394 .00766 4
LRR86 1 .OCln-1 .02803 .02699
LRR86 1 .005n-I .07296 .09760
LRR86 1 .0002n-' .02141 .03336 4
LRR86 1 .0005n-' .11193 .12495 4

LRR86 1 .00005n- 1  .09838 .23290 4
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7. Conclusion

Using a simple M/M/1 queuing example, we have illustrated the numerical behavior of different
variants of SA, combined with various derivative estimation methods, to optimize a steady-state
stochastic system with respect to a continuous parameter. We observed that the results are quite
sensitive to the choice of the sequence of gains in the SA algorithm. That kind of sensitivity had
also been pointed out previously by many authors in different contexts. See Benveniste, Metivier,
and Priouret (1987), Goldstein (1988), Kushner and Clark (1978), Polyak and Tsypkin (1980),
and the references cited there. We have experimented different variants of SA designed to improve
convergence when the optimal sequence of gains is unknown. Some of them did improve convergence
significantly in some situations, but others did not. The best results were obtained when IPA was
used as a derivative estimation method, with the IPA accumulators not reset to zero between SA
iterations, and also with the regenerative IPA approach of Fu (1990). FDC and other IPA variants
followed closely, while the LR method performed well only in its regenerative versions and when the
regenerative cycles were very short. Our results also indicate that one must be very careful about
confidence intervals in these kinds of experiments, even if they are asymptotically valid, because
the bias sometimes converges rather slowly.

Our experiments dealt with an example where the decision parameter 0 was one-dimensional.
A multidimensional case certainly involves more intensive computations and perhaps further diffi-
culties. For most complex systems encountered in practice, the regenerative variants would become
impractical. Then, IPA, if it applies, could be used with a growing truncated horizon. When IPA
does not apply directly, try SPA or some other PA variant (Ho and Cao 1991, L'Ecuyer 1991). If 11o

PA-like estimator is available, FDC is likely to be the best choice, unless one can use a regenerative
approach with short regenerative cycles.

As always, since our experiments were done on a specific example, one should be careful in
making any generalizations. The primary goal of this example is not really to compare performance,
but to illustrate convergence properties and possible dangers. We also recall that in many cases,
IPA and/or LR do not apply (L'Ecuyer 1990). Numerical results for other kinds of examples are
given in Giroux (1989), which has been the starting point of this paper.

The performance of the derivative estimators and of the optimization algorithms could be
further improved by incorporating variance reduction techniques. For instance, for our M/M/1
example, one can simulate at a parameter value different than the one at which the derivative
must be estimated. This is importance sampling (Bratley, Fox, and Schrage 1987). Asmussen
and Rubinstein (1991) and Rubinstein and Shapiro (1993) argue that a queueing system should in

general be simulated at heavier traffic than the one at which we want the estimation. Exploring the

impact of such variance reduction techniques on the performance of stochastic optimization methods
is the subject of ongoing research. Another optimization approach, different from SA, is the so-
called stochastic counterpart method, developed in Rubinstein and Shapiro (1993). Comparisons

between the latter approach and SA should be reported in forthcoming papers.

Appendix I

In this appendix, we look at what could happen with the combination of SA with FDC when the

number t,, of customers per iteration is kept constant. We will examine the simplest case, namely
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t, = 1 for each n, and prove that the algorithm converges to the wrong value. It will be clear from
the proof that with tn = t for any larger constant t, the algorithm will also display a similar kind
of biased behavior, althought the bias should be expected to decrease with t.

PROPOSITION 1. Let Assumptions A-C of L'Ecuyer and Glynn (1993) hold. Suppose that
C(O) + 0 has its minimum at 0 = . Let 60 = re(O°). Then, with tn, = 1, SA with FDC converges
a.s. to sO.

PROOF. When we estimate the average cost using tn = 1, we actually look at the time spent
in the system by one customer, i.e. the customer being served in that subrun. This time can be
expressed as hl(O,s,w) = s + OB-'(w), where s is the (waiting) time already spent in the system
by that customer and w is viewed as the U(0, 1) variate used to generate its service time. We then
have

h,(0+,sn,"w)- h,(6;,s-,,W) On 9B-1 (w) - On-B-'(w) -= (w).o+. -00) n o 0- oB

which has finite variance, from Assumption A. Also, E,[Yn] = 1 + C'(O). If we redefine for the
moment w(O) = 0 + C(O) and apply Proposition 1 of L'Ecuyer and Glynn (1993), the conclusion
follows. 0

As an illustration, take an M/M/1 queue with arrival rate A = 1, mean service time 0 E E =

[0rain,0ma] for Om. < 1, and C(O) = 1/0. Here, C(O) + 0 has its minimum at 9o = 1. Therefore,
On converges to 0m.x with probability one. The problem here is that with a different 0, the time
spent in the queue by the customers already there at the beginning of the iteration would have
been different and the method does not take that into account. This flaw also exists for any fixed
t, = t. The difference 10o - 08I should decrease with t. In our numerical results, for t as large as

100, the effect is still significant.

Appendix II

We verify that the M/M/1 example of §2 satisfies Assumptions A-C and the assumptions of
Proposition 7 of L'Ecuyer and Glynn (1993). Using the notation of the latter paper, one has

Be(() = 1 - e-CI, B;(u) = -Oln(1 - u), be(() = (1/9)e-C/, and 7ln b,() = ( 0 - 0)102. For A
(i), take h = B 1=,. For A (ii), one has Z, = -In(1 - Uj) and one can take r(u) = -ln(1 - u).

Since the exponential distribution has finite moments of all orders, both C (under B) and F(u)

have finite moments of all orders. The Laplace transform f0°7 e'Ce-Cd( of the exponential density
is finite for Isl < 1, which gives B (i). For the exponential density, B (ii) and (iii) dearly hold. For

B (iv), for any given K > 1 and 9o E ), take to = 9o(K - 1)/(K + 1) and 0 = Go + co. Then,

( 1 1subo'•(0• exp / ___

-0- 0 o C Go

24 + to < o + to- 0 Oo - to
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and

Ea ,, S P ln be(() E g +t 9SU 2 8
Eeo÷+ o [(8o + co)- ()s + ([0 -IE -(<

(oo -
<o)'6

since the exponential distribution has finite moments of all orders. Finally, C(x) = C1 /x is convex,
so Assumption C is also satisfied. The assumptions on the interarrival and service time distributions
made in Proposition 7 of L'Ecuyer and Glynn (1993) also hold. For the latter, Z, can be expressed
as Zj= 'p(O, () = i/0
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